设﹙a-b)/c=x,(b-c)/a=y,(c-a)/b=z
则左边=﹙x+y+z﹚﹙1/x+1/y+1/z﹚
=3+﹙y+z﹚/x+﹙x+z﹚/y+﹙x+y﹚/z
∵﹙y+z﹚/x=[b﹙b-c﹚+a﹙c-a﹚]/﹙ab﹚·c/﹙a-b﹚
=c﹙b-a﹚﹙b+a-c﹚/[ab﹙a-b﹚]
=﹣c﹙-c-c﹚/﹙ab﹚
=2c²/﹙ab﹚
∴左边=3+2c²/﹙ab﹚+2a²/﹙bc﹚+2b²/﹙ac﹚
=3+2﹙a³+b³+c³﹚/﹙abc﹚
=3+2×3abc/﹙abc﹚=9=右边
(若a+b+c =0,则a³+b³+c³=3abc)