设圆C的圆心C为(x,y),半径为r
∵圆C过点A(0,a),∴可得圆的方程为(0-x)^2+(a-y)^2=r^2
又∵圆C在x轴上截得的弦MN的长为2a
∴(可看作垂线)点(x+a,0)在圆C上,即(x+a-x)^2+(0-b)^2=r^2
于是有x^2+(y-a)^2=a^2+y^2,即x^2=2ay
∴圆C的圆心C的轨迹方程为x^2=2ay
设圆C的圆心C为(x,y),半径为r
∵圆C过点A(0,a),∴可得圆的方程为(0-x)^2+(a-y)^2=r^2
又∵圆C在x轴上截得的弦MN的长为2a
∴(可看作垂线)点(x+a,0)在圆C上,即(x+a-x)^2+(0-b)^2=r^2
于是有x^2+(y-a)^2=a^2+y^2,即x^2=2ay
∴圆C的圆心C的轨迹方程为x^2=2ay