1.如图,在平面直角坐标系中,抛物线y=x2-2x-4与直线y=x交于点A、B,M是抛物线上一个动点,连接OM.

1个回答

  • (1)∵y=x2-2x-4=(x-1)2-5,

    ∴当M是顶点时,M的坐标为(1,-5),

    解方程组 y=x2-2x-4 y=x ,得A(-1,-1)B(4,4),

    过点M作y轴的平行线与AB交于点N,易得N(1,1),如图,

    ∴S△OBM=S△OMN+S△BMN=1 2 ×6×1+1 2 ×6×3=12;

    (2)①当M在直线AB下方时,

    设M(xm,xm2-2xm-4),则N(xm,xm)

    S△OMB=S△OMN+S△MNB

    =1 2 ×[xm-(x 2m -2xm-4)]×xm+1 2 ×[xm-(x 2m -2xm-4)]×(4-xm)=10(2分)

    解得x1=3- 5 2 ,x2=3+ 5 2

    即M1(3- 5 2 ,-10+ 5 2 ),M2(3+ 5 2 ,-10- 5 2 )(2分)

    ②当M在直线AB上方时,同理

    M3(3-3 5 2 ,13-3 5 2 ),M4(3+3 5 2 ,13+3 5 2 )(2分)

    综上所述,即M1(3- 5 2 ,-10+ 5 2 ),M2(3+ 5 2 ,-10- 5 2 ),

    M3(3-3 5 2 ,13-3 5 2 ),M4(3+3 5 2 ,13+3 5 2 )

    (3)设M(xm,xm2-2xm-4),则N(xm,xm)

    S△OMB=S△OMN+S△MNB=1 2 ×[xm-(x 2m -2xm-4)]×xm+1 2 ×[xm-(x 2m -2xm-4)]×(4-xm)

    =1 2 ×[xm-(x 2m -2xm-4)]×4

    =2(-xm2+3xm+4)

    =-2(xm-3 2 )2+25 2 (2分)

    ∴当x=3 2 时,S△OMB有最大值.