做差法
x²+y²+z²-(xy+yz+xz)
=1/2[2x²+2y²+2z²-(2xy+2yz+2xz)]
配方
=1/2[(x-y)²+(y-z)²+(z-x)²]≥0
所以我们可以做了
证明
因为1/2[(x-y)²+(y-z)²+(z-x)²]≥0
所以1/2[2x²+2y²+2z²-(2xy+2yz+2xz)]≥0
所以x²+y²+z²-(xy+yz+xz)≥0
做差法
x²+y²+z²-(xy+yz+xz)
=1/2[2x²+2y²+2z²-(2xy+2yz+2xz)]
配方
=1/2[(x-y)²+(y-z)²+(z-x)²]≥0
所以我们可以做了
证明
因为1/2[(x-y)²+(y-z)²+(z-x)²]≥0
所以1/2[2x²+2y²+2z²-(2xy+2yz+2xz)]≥0
所以x²+y²+z²-(xy+yz+xz)≥0