(1) (1+根号下3)c=2b
(1+根号下3)sinC=2sinB
(1+根号下3)sinC=2sin[180°-(30°+C)]
(1+根号下3)sinC=2sin(30°+C)
(1+根号下3)sinC=cosC+根号3sinC
sinC=cosC
所以C为45°
(2)向量CB点乘向量CA=1+根号下3
ab/cosC=1+根号下3
ab=根号2(1+根号3)--------(1)
因为(1+根号3)c=2b
(1+根号3)=2b/c---------------------(2)
将(2)代入(1)
得ac=2根号2-----------------------------(3)
又因为a/sinA=c/sinC
得2a=根号2c-------------------------(4)
联立(3)和(4)
可得a=根号2,c=2
因为(1+根号3)c=2b
所以b=1+根号3
a=根号2,c=2,b=1+根号3