(1)由a(n+1)=f(a(n))=a(n)/(1+a(n)),取倒数可得1/a(n+1) = 1/a(n) + 1,所以1/a(n) = n-1 + 1/m
即a(n)=m/(mn-m+1).
(2)若a(n+1) ≤f(a(n))=a(n)/(1+a(n)),则1/a(n+1) ≥ 1/a(n) + 1,所以1/a(n) ≥n-1 + 1/m,则
a(n) ≤m/(mn-m+1),所以b(n)=a(n)/(n+1)≤m/((n+1)(mn-m+1)).
因为0
(1)由a(n+1)=f(a(n))=a(n)/(1+a(n)),取倒数可得1/a(n+1) = 1/a(n) + 1,所以1/a(n) = n-1 + 1/m
即a(n)=m/(mn-m+1).
(2)若a(n+1) ≤f(a(n))=a(n)/(1+a(n)),则1/a(n+1) ≥ 1/a(n) + 1,所以1/a(n) ≥n-1 + 1/m,则
a(n) ≤m/(mn-m+1),所以b(n)=a(n)/(n+1)≤m/((n+1)(mn-m+1)).
因为0