由正弦定理有a/sinA=b/sinB=c/sinC得到
(a-c cosB)/(b-c cosA)=(sinA-sinCcosB)/(sinB-sinCcosA)=(sin(B+C)-sinCcosB)/(sin(A+C)-sinCcosA)=(sinBcosC+cosBsinC-sinCcosB)/(sinAcosC+cosAsinC-sinCcosA)=sinB/sinA
由正弦定理有a/sinA=b/sinB=c/sinC得到
(a-c cosB)/(b-c cosA)=(sinA-sinCcosB)/(sinB-sinCcosA)=(sin(B+C)-sinCcosB)/(sin(A+C)-sinCcosA)=(sinBcosC+cosBsinC-sinCcosB)/(sinAcosC+cosAsinC-sinCcosA)=sinB/sinA