总的就是利用cos(a-b)=cosacosb+sinasinb
1、α属于(π/2,π)
∴sina=4/5
cos(π/4-a)=cosπ/4cosa+sinπ/4sina=-√2/10
2、cosθ=-8/17
cos(θ-π/3)=cosθcosπ/3+sinθsinπ/3=-4/17+15√3/17
3、cosa=-√5/3 sinβ=-√7/4
cos(β-a)=cosβcosa+sinβsina=-√5/4+√7/6
总的就是利用cos(a-b)=cosacosb+sinasinb
1、α属于(π/2,π)
∴sina=4/5
cos(π/4-a)=cosπ/4cosa+sinπ/4sina=-√2/10
2、cosθ=-8/17
cos(θ-π/3)=cosθcosπ/3+sinθsinπ/3=-4/17+15√3/17
3、cosa=-√5/3 sinβ=-√7/4
cos(β-a)=cosβcosa+sinβsina=-√5/4+√7/6