a^2/x+b^2/y≥(a+b)^2/(x+y),
等价于(x+y)(a^2/x+b^2/y)>=(a+b)^2 (1)
等价于a^2+x/y*b^2+y/x*a^2+b^2>=a^2+2ab+b^2
等价于 b^2*x/y+a^2y/x>=2ab
由基本不等式得
(PS,(1)可由柯西不等式直接得出)
f(x)=4/2x+9/(1-2x)=(2x+1-2x)[4/2x+9/(1-2x)]>=(2+3)^2=25
a^2/x+b^2/y≥(a+b)^2/(x+y),
等价于(x+y)(a^2/x+b^2/y)>=(a+b)^2 (1)
等价于a^2+x/y*b^2+y/x*a^2+b^2>=a^2+2ab+b^2
等价于 b^2*x/y+a^2y/x>=2ab
由基本不等式得
(PS,(1)可由柯西不等式直接得出)
f(x)=4/2x+9/(1-2x)=(2x+1-2x)[4/2x+9/(1-2x)]>=(2+3)^2=25