f(x)=2√3sin²x-sin(2x-π/3)
=2√3sin²x-[sin(2x)cos(π/3)-cos(2x)sin(π/3)]
=2√3sin²x-[(1/2)sin(2x)-(√3/2)cos(2x)]
=√3(1-2cos2x)-[(1/2)sin(2x)-(√3/2)cos(2x)]
=√3-√7[(1/√28)sin(2x)-(3√3/√28)cos(2x)]
=√3-√7sin(2x+φ) (0
f(x)=2√3sin²x-sin(2x-π/3)
=2√3sin²x-[sin(2x)cos(π/3)-cos(2x)sin(π/3)]
=2√3sin²x-[(1/2)sin(2x)-(√3/2)cos(2x)]
=√3(1-2cos2x)-[(1/2)sin(2x)-(√3/2)cos(2x)]
=√3-√7[(1/√28)sin(2x)-(3√3/√28)cos(2x)]
=√3-√7sin(2x+φ) (0