y=[1-(tan2x)^2]/[1+(tan2x)^2]
=[1+(tan2x)^2-2(tan2x)^2]/(1+(tan2x)^2]
=1-2/(1+(tan2x)^2)
=1-sin4x/2tan2x
=1-2sin2x*cos2x/2tan2x
=1-c0s2x^2
=1/2-1/2cos4x
所以
最小周期是:
pai/2
y=[1-(tan2x)^2]/[1+(tan2x)^2]
=[1+(tan2x)^2-2(tan2x)^2]/(1+(tan2x)^2]
=1-2/(1+(tan2x)^2)
=1-sin4x/2tan2x
=1-2sin2x*cos2x/2tan2x
=1-c0s2x^2
=1/2-1/2cos4x
所以
最小周期是:
pai/2