已知两个向量a=(cosx,sinx),b=(2根号2+sinx,2根号2-cosx),f(x)=ab,x属于【0,π】

1个回答

  • (1) f(x)=ab=2√2cosx+sinxcosx+2√2sinx-sinxcosx

    =2√2(sinx+cosx) = 2√2 × √2sin(x+π/4) = 4sin(x+π/4)

    x属于【0,π】,(x+π/4)属于【π/4,5π/4】,sin(x+π/4)属于【-√2/2,1】.

    所以 f(x)的值域为【-2√2,4】.

    (2)若ab=1,则4sin(x+π/4)=1,sin(x+π/4)=1/4.

    由cos(x+π/4)=±√(1-1/16)=-√15/4(余弦在第2,3象限取负),

    ∴cos(x+7π/12)

    =cos(x+π/4+π/3)

    =cos(x+π/4)cosπ/3-sin(x+π/4)sinπ/3

    =(-√15/4)×(1/2)-(1/4)×(√3/2)

    =-(√15+√3)/8.