焦点坐标(1,0),设直线AB方程为y=k(x-1),代入抛物线方程得:
x²-(2+4/k)x+1=0,由韦达定理可知:x1+x2=2+4/k,x1x2=1
根据抛物线上的点到焦点距离等于到准线x=-1的距离
m=x1+1,n=x2+1
mn=(x1+1)(x2+1)=x1x2+x1+x2+1=4+4/k
m+n=x1+x2+2=4+4/k
故m+n=mn,选A
焦点坐标(1,0),设直线AB方程为y=k(x-1),代入抛物线方程得:
x²-(2+4/k)x+1=0,由韦达定理可知:x1+x2=2+4/k,x1x2=1
根据抛物线上的点到焦点距离等于到准线x=-1的距离
m=x1+1,n=x2+1
mn=(x1+1)(x2+1)=x1x2+x1+x2+1=4+4/k
m+n=x1+x2+2=4+4/k
故m+n=mn,选A