设x=(X1,X2),y=(Y1,Y2).[x,y是向量,(X1,X2),(Y1,Y2)都是坐标]
则a=y-x=(Y1-X1,Y2-X2),b=2x-y=(2X1-Y1,2X2-Y2)
∵|a|=|b|=1,即a^2=b^2=1
∴a^2=(Y1-X1,Y2-X2)^2=1,即 Y1^2+X1^2-2X1Y1+Y2^2+X2^2-2X2Y2=1①
b^2=(2X1-Y1,2X2-Y2)^2=1即4X1^2+Y1^2-4X1Y1+4X2^2+Y2^2-4X2Y2=1②
又∵a*b=0 即(Y1-X1,Y2-X2)*(2X1-Y1,2X2-Y2)=0
∴化简得-2X1^2-Y1^2+3X1Y1-2X2^2-Y2^2+3X2Y2=0③
①*3+③*2得:(Y1^2+Y2^2)-(X1^2+X2^2)=3④
②*3+③*4得:4(X1^2+X2^2)-(Y1^2+Y2^2)=3⑤
解方程组④⑤,得X1^2+X2^2=2
Y1^2+Y2^2=5
∴|x|+|y|=二次根号项(X1^2+X2^2)+二次根号项(Y1^2+Y2^2)
=根号2+根号5
(写在纸上比较好看懂,这上面不知道怎么打符号)