解题思路:(1)初始状态弹簧处于压缩状态,形变量为 x1,物块A对挡板P的压力恰为零,但不会离开P,此时A、B、C连同弹簧组成的系统共同瞬间静止,A所受电场力与弹簧的弹力大小相等,方向相反,可求弹簧的伸长量x2,两者之和也就是C物体的下降距离,此过程中C重力是能的减少量恰等于弹簧弹性势能与B电势能的增量之和.
(2)若C的质量改为2M,则当A刚离开挡板P时,弹簧的伸长量仍为x2,但此时A物体静止但B、C两物体的速度相等且不为零,此过程中C物体重力势能减少量等于B物体机械能和电势能的增量、弹簧弹簧弹性势能增量及系统动能的增量之和.
(1)开始时弹簧形变量为x1,
由平衡条件:kx1=EQB得x1=
EQB
k①
设当A刚离开档板时弹簧的形变量为x2:
由:②kx2=EQA得x2=
EQA
k②
故C下降的最大距离为:h=x1+x2③
由①~③式可解得h=
E
k(QB+QA)④
(2)由能量守恒定律可知:C下落h过程中,C重力势能的减少量等于B的电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和
当C的质量为M时:Mgh=QBE•h+△E弹⑤
当C的质量为2M时,设A刚离开挡板时B的速度为V,则有
2Mgh=QBEh+△E弹+
1
2(2M+mB)V2⑥
由④~⑥式可解得A刚离开P时B的速度为:V=
2MgE(QA+QB)
k(2M+mB)⑦
答:(1)C下降的最大距离为h=
E
k(QB+QA)
(2)A刚离开P时B的速度为为:V=
2MgE(QA+QB)
k(2M+mB)
点评:
本题考点: 能量守恒定律;共点力平衡的条件及其应用;胡克定律;电场强度.
考点点评: 本题过程较繁杂,涉及功能关系多,有弹性势能、电势能、重力势能等之间的转化,全面考察了学生综合分析问题能力和对功能关系的理解及应用,难度较大.对于这类题目在分析过程中,要化繁为简,即把复杂过程,分解为多个小过程分析,同时要正确分析受力情况,弄清系统运动状态以及功能关系.