余弦定理是怎么证明的如题``要详细点哦``最好有式子

1个回答

  • △ABC的AC=b,CB=a,AB=c,则A,B,C点的坐分别为A(b,0),B(acos C,asin C),C(0,0).

    ∠ACB=∠C,CB为∠ACB的终边,B为CB上一点,设B的坐标为(x,y),则sinC= =,cos C==所以B点坐标x=acosC,y=asinC.

    |AB|2=(acosC-b)2+(asinC-0)2

    =a2cos2C-2abcosC+b2-a2sin2C

    =a2+b2-2abcos C,

    即c2=a2+b2-2abcos C.

    证明2:参考http://www.***.com/zadmin/manage/details.asp?TopicAbb=directions&FileName=g1v4sxb5570a05.htm