tanα=2 sinα/cosα=2 sinα=2cosα
sin²α+cos²α=1
(2cosα)²+cos²α=1
5cos²α=1
cos²α=1/5
(1+sinαcosα)/(sin²α+1)
=(1+2cos²α)/(1-cos²α+1)
=(1+2cos²α)/(2-cos²α)
=[1+2×(1/5)]/(2-1/5)
=(7/5)/(9/5)
=7/9
tanα=2 sinα/cosα=2 sinα=2cosα
sin²α+cos²α=1
(2cosα)²+cos²α=1
5cos²α=1
cos²α=1/5
(1+sinαcosα)/(sin²α+1)
=(1+2cos²α)/(1-cos²α+1)
=(1+2cos²α)/(2-cos²α)
=[1+2×(1/5)]/(2-1/5)
=(7/5)/(9/5)
=7/9