等差数列{ a n }中a 3 =7,a 1 +a 2 +a 3 =12,记S n 为{a n }的前n项和,

1个回答

  • (1)设数列{a n}的公差为d,

    由a 3=a 1+2d=7,a 1+a 2+a 3=3a 1+3d=12,

    解得a 1=1,d=3,

    ∴a n=3n-2,

    S n =n+

    n(n-1)

    2 ×3 =

    3n 2 -n

    2 .

    (2)∵b n=a na n+1=(3n-2)(3n+1),

    1

    b n =

    1

    (3n-2)(3n+1) =

    1

    3 (

    1

    3n-2 -

    1

    3n+1 ) ,

    T n =

    1

    3 (1-

    1

    4 +

    1

    4 -

    1

    7 +

    1

    7 -

    1

    11 +…+

    1

    3n-5 -

    1

    3n-2 +

    1

    3n-2 -

    1

    3n+1 )

    =

    1

    3 (1-

    1

    3n+1 )<

    1

    3 .

    (3)由(2)知, T n =

    n

    3n+1 ,∴ T 1 =

    1

    4 , T m =

    m

    3m+1 , T n =

    n

    3n+1 ,

    ∵T 1,Tm,Tn成等比数列,

    ∴ (

    m

    3m+1 ) 2 =

    1

    4 ×

    n

    3n+1 ,

    6m+1

    m 2 =

    3n+4

    n ,

    当m=1时,7=

    3n+4

    n ,n=1,不合题意;

    当m=2时,

    13

    4 =

    3n+4

    n ,n=16,符合题意;

    当m=3时,

    19

    9 =

    3n+4

    n ,n无正整数解;

    当m=4时,

    25

    16 =

    3n+4

    n ,n无正整数解;

    当m=5时,

    31

    25 =

    3n+4

    n ,n无正整数解;

    当m=6时,

    37

    36 =

    3n+4

    n ,n无正整数解;

    当m≥7时,m 2-6m-1=(m-3) 2-10>0,

    6m+1

    m 2 <1 ,而

    3n+4

    n =3+

    4

    n >3 ,

    所以,此时不存在正整数m,n,且7<m<n,使得T 1,Tm,Tn成等比数列.

    综上,存在正整数m=2,n=16,且1<m<n,使得T 1,Tm,Tn成等比数列.