(1)设数列{a n}的公差为d,
由a 3=a 1+2d=7,a 1+a 2+a 3=3a 1+3d=12,
解得a 1=1,d=3,
∴a n=3n-2,
S n =n+
n(n-1)
2 ×3 =
3n 2 -n
2 .
(2)∵b n=a na n+1=(3n-2)(3n+1),
∴
1
b n =
1
(3n-2)(3n+1) =
1
3 (
1
3n-2 -
1
3n+1 ) ,
T n =
1
3 (1-
1
4 +
1
4 -
1
7 +
1
7 -
1
11 +…+
1
3n-5 -
1
3n-2 +
1
3n-2 -
1
3n+1 )
=
1
3 (1-
1
3n+1 )<
1
3 .
(3)由(2)知, T n =
n
3n+1 ,∴ T 1 =
1
4 , T m =
m
3m+1 , T n =
n
3n+1 ,
∵T 1,Tm,Tn成等比数列,
∴ (
m
3m+1 ) 2 =
1
4 ×
n
3n+1 ,
即
6m+1
m 2 =
3n+4
n ,
当m=1时,7=
3n+4
n ,n=1,不合题意;
当m=2时,
13
4 =
3n+4
n ,n=16,符合题意;
当m=3时,
19
9 =
3n+4
n ,n无正整数解;
当m=4时,
25
16 =
3n+4
n ,n无正整数解;
当m=5时,
31
25 =
3n+4
n ,n无正整数解;
当m=6时,
37
36 =
3n+4
n ,n无正整数解;
当m≥7时,m 2-6m-1=(m-3) 2-10>0,
则
6m+1
m 2 <1 ,而
3n+4
n =3+
4
n >3 ,
所以,此时不存在正整数m,n,且7<m<n,使得T 1,Tm,Tn成等比数列.
综上,存在正整数m=2,n=16,且1<m<n,使得T 1,Tm,Tn成等比数列.