将原式乘以(2-1),再多次用平方差公式即可.
原式=(2-1)(2+1)(2^2+1)(2^4+1)……(2^2n+1)
=(2^2-1)(2^2+1)(2^4+1)……(2^2n+1)
=(2^4-1)(2^4+1)……(2^2n+1)
=……
=(2^2n-1)(2^2n+1)
=2^4n-1
将原式乘以(2-1),再多次用平方差公式即可.
原式=(2-1)(2+1)(2^2+1)(2^4+1)……(2^2n+1)
=(2^2-1)(2^2+1)(2^4+1)……(2^2n+1)
=(2^4-1)(2^4+1)……(2^2n+1)
=……
=(2^2n-1)(2^2n+1)
=2^4n-1