求值:(1-sin^6 x-cos^6 x)/(1-sin^4 x-cos^4 x)

3个回答

  • 因为sin^4 x+cos^4 x=(sin^2 x+cos^2 x)^2-2sin^2 x cos^2 x=1-2sin^2 x cos^2 x

    所以1-sin^4 x-cos^4 x=2sin^2 x cos^2 x

    因为

    sin^6 x+cos^6 x

    =(sin^2 x+cos^2 x)^3-3sin^4 x cos^2 x-3sin^2 x cos^4 x

    =1-3sin^2 x cos^2 x(sin^2 x+cos^2 x)

    =1-3sin^2 x cos^2 x

    所以1-sin^6 x-cos^6 x=3sin^2 x cos^2 x

    所以(1-sin^6 x-cos^6 x)/(1-sin^4 x-cos^4 x) =3sin^2 x cos^2 x/(2sin^2 x cos^2 x)=3/2