两边求导
y'=e^y+y'xe^y
y'(1-xe^y)=e^y
y''(1-xe^y)-y'(e^y+y'xe^y)=y'e^y
y''(1-xe^y)-y'y'=y'e^y
y''(1-xe^y)-[e^y/(1-xe^y)]^2=e^2y/(1-xe^y)
y''=e^2y/(1-xe^y)^3+e^2y/(1-xe^y)^2
两边求导
y'=e^y+y'xe^y
y'(1-xe^y)=e^y
y''(1-xe^y)-y'(e^y+y'xe^y)=y'e^y
y''(1-xe^y)-y'y'=y'e^y
y''(1-xe^y)-[e^y/(1-xe^y)]^2=e^2y/(1-xe^y)
y''=e^2y/(1-xe^y)^3+e^2y/(1-xe^y)^2