求由x=0 y=0 x+y=1围成的三棱柱的体积
下底为z=0 上底为z=x^2+y^2(圆锥)
=∫(0,1)dx∫(0,1-x)dy∫(0,x^2+y^2)dz
=∫(0,1)dx∫(0,1-x)[z](0,x^2+y^2)dy
=∫(0,1)dx∫(0,1-x)[x^2+y^2]dy
=∫(0,1)[x^2y+y^3/3](0,1-x)dx
=∫(0,1)[x^2(1-x)+(1-x)^3/3]dx
=[x^2/3-x^/2-(1-x)^4/12](0,1)
=1/6
求由x=0 y=0 x+y=1围成的三棱柱的体积
下底为z=0 上底为z=x^2+y^2(圆锥)
=∫(0,1)dx∫(0,1-x)dy∫(0,x^2+y^2)dz
=∫(0,1)dx∫(0,1-x)[z](0,x^2+y^2)dy
=∫(0,1)dx∫(0,1-x)[x^2+y^2]dy
=∫(0,1)[x^2y+y^3/3](0,1-x)dx
=∫(0,1)[x^2(1-x)+(1-x)^3/3]dx
=[x^2/3-x^/2-(1-x)^4/12](0,1)
=1/6