已知sinαcosα=1/8,则cosα+sinα的值等于 若sinα+sin的平方α=1,则cos的平方α+cos的四

1个回答

  • sinαcosα=1/8

    2sinαcosα=1/4

    1+2sinαcosα=1/4

    (sinα)^2+(cosα)^2+2sinαcosα=1/4

    (sinα+cosα)^2=1/4

    sinα+cosα=±1/2

    sinα+(sinα)^2=1

    sinα=1-(sinα)^2

    sinα=(cosα)^2平方

    sinα=(cosα)^2

    (sinα)^2=(cosα)^4

    (cosα)^4-(sinα)^2=0

    (cosα)^4+1-(sinα)^2=1

    (cosα)^4+(cosα)^2=1

    tanα=根号3,α为第三象限,则sinα=-根号3/2

    sinα+cosα=二分之根号二(平方)

    (sinα)^2+(cosα)^2+2sinαcosα=1/2

    1+2sinαcosα=1/2

    2sinαcosα=-1/2

    sinαcosα=-1/4

    1/(sinα)^2+1/(cosα)^2

    =(cosα)^2/[(cosα)^2(sinα)^2]+(sinα)^2/[(cosα)^2(sinα)^2]

    =[(cosα)^2+(sinα)^2]/[(cosα)^2(sinα)^2]

    =1/(cosαsinα)^2

    =1/(-1/4)^2

    =1/(1/16)

    =16