化简:(1)3/2cosx-√3/2sinx(2)√3sinx/2+cosx/2(3)√2/4sin(π/4-x)+√6

1个回答

  • (1)3/2cosx-√3/2sinx=√3(√3/2cosx-1/2sinx)=√3sin(π/3-x)

    (2)√3sinx/2+cosx/2=2(√3/2sinx+1/2cosx)=2sin(x+π/6)

    (3)√2/4sin(π/4-x)+√6/4cos(π/4-x)=√2/2[1/2sin(π/4-x)+√3/2cos(π/4-x)]=√2/2sin(7π/12-x)

    (4)sin347°cos148°+sin77°cos58°=-sin13°(-cos32°)+cos13°sin32°=sin(32°+13°)=sin45°=√2/2

    (5)sin164°sin224°+sin254°sin314°=sin16°(-sin44°)-sin74°(-sin46°)=cos16°cos44°-sin16°sin44°=cos(16°+44°)=cos60°=1/2

    (6)sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=sin(α+β)cos(γ-β)+cos(β+α)sin(γ-β)=

    sin(α+β+γ-β)=sin(α+γ)

    (7)sin(α-β)sin(β-γ)-cos(α-β)cos(γ-β)=sin(α-β)sin(β-γ)-cos(α-β)cos(β-γ)=

    -cos(α-β+β-γ)=-cos(α--γ)

    (8)(tan5π/4+tan5π/12)/(1-tan5π/12)=(tanπ/4+tan5π/12)/(1-tanπ/4*tan5π/12)=

    tan(π/4+5π/12)=tan2π/3=-√3

    (9)[sin(α+β)-2sinαcosβ]/[2sinαsinβ+cos(α+β)]=[cosαsinβ-sinαcosβ]/[sinαsinβ+cosαsinβ]

    =sin(β-α)/cos(β-α)=tan(β-α)