设经过三条直线交点的曲线系方程为(x+2y+2)(2x-y-6)+K(2x-y-6)(x-2y+6)+Z(x+2y+2)(x-2y+6)=0,这个曲线系画在坐标平面上是经过三条直线交点的二次曲线.选择k,z,可以使曲线是圆.
2x^2+3xy-2y^2-2x-14y-12
+k(2x^2-5xy+2y^2+6x+6y-36)
+z(x^2-4y^2+8x+8y+12)=0,
(2+2k+z)x^2+(3-5k)xy+(-2+2k-4z)y^2+(-2+6k+8z)x+(-14+6k+8z)y-12-36k+12z=0,
令2+2k+z=-2+2k-4z,3-5k=0,解得k=3/5,z=-4/5.
所求方程为(12/5)(x^2+y^2)+(-24/5)x+(-84/5)y-216/5=0,
即x^2+y^2-2x-7y-18=0.