已知数列{a n }满足a 1 = 1 11 , a n+1 = a n 1-2 a n (n∈N * ).

1个回答

  • (1)证明:∵a n≠0, a n+1 =

    a n

    1-2 a n

    1

    a n+1 =

    1-2 a n

    a n =

    1

    a n -2

    1

    a n+1 -

    1

    a n =-2,

    1

    a 1 =11

    ∴数列{

    1

    a n }是以11为首项,以-2为公差的等差数列等差数列.

    (2)由(1)可得

    1

    a n =11+(n-1)×(-2) =-2n+13

    ∴ b n =|

    1

    a n | =|13-2n|=

    13-2n,n≤6

    2n-13,n>6

    设数列列{

    1

    a n }的前项和为T n,则由等差数列的求和公式可得, T n =

    11+13-2n

    2 ×n =12n-n 2

    若n≤6时,S n=T n=12n-n 2

    若n>7时,S n=T 6+[-(T n-T 6)]=2T 6-T n=n 2-12n+72

    ∴ S n =

    12n- n 2 ,n≤6

    n 2 -12n+72,n≥7