(1)证明:∵a n≠0, a n+1 =
a n
1-2 a n
∴
1
a n+1 =
1-2 a n
a n =
1
a n -2
∴
1
a n+1 -
1
a n =-2,
1
a 1 =11
∴数列{
1
a n }是以11为首项,以-2为公差的等差数列等差数列.
(2)由(1)可得
1
a n =11+(n-1)×(-2) =-2n+13
∴ b n =|
1
a n | =|13-2n|=
13-2n,n≤6
2n-13,n>6
设数列列{
1
a n }的前项和为T n,则由等差数列的求和公式可得, T n =
11+13-2n
2 ×n =12n-n 2
若n≤6时,S n=T n=12n-n 2
若n>7时,S n=T 6+[-(T n-T 6)]=2T 6-T n=n 2-12n+72
∴ S n =
12n- n 2 ,n≤6
n 2 -12n+72,n≥7