设定义域为R的函数f(x)=|lg|x-1||(x不等于1),0(x=1),则关于的方程f(x)^2+bf(x)+c=0

3个回答

  • C:b<0且c=0

    等价于关于f(x)的方程[f(x)]^2+bf(x)+c=0有2个解,

    f(x)=0或f(x)=k>0

    f(x)=0时有三个解:x=1

    |lg|x-1||=0,lg|x-1|=0,x-1=±1,x=2或0

    f(x)=k>0时有四个解

    |lg|x-1||=k,lg|x-1|=±k,|x-1|=10^(±k),x-1=±10^(±k),

    x=1±10^(±k)

    逆过来,如果关于f(x)的方程有两个不等正实根,

    则关于x的方程有8个实根,与题意不合.

    如果关于f(x)的方程有一个正实根,一个负实根,

    则关于x的方程只有4个实根,与题意不合.

    如果关于f(x)的方程有一个负实根,一个零根,

    则关于x的方程只有三个实根,与题意不合

    如果关于f(x)的方程有两个负实根,

    则关于x的方程没有实根,与题意不合.

    所以关于f(x)的方程必有一个零根与一个正实根,

    b>0且c=0

    所以关于x的方程[f(x)]^2+bf(x)+c=0有7个不同的实数解的充分必要条件是b<0且c=0.

    因为y^2+by+c=0最多两根

    如果只有一根,显然f2(x)+bf(x)+c=0最多只有3根

    所以y^2+by+c=0必然有两不等根!

    因为0≤y=f(x)

    如果y^2+by+c=0是两不等正根,则必然f2(x)+bf(x)+c=0有8个不同的实数解

    而y=f(x)=0有3根x=1,x=2,x=0

    所以必有一根为y=0,c=0(没有的话不可能有7根)

    另外一根y=-b>0,-b=lg(x-1),-b=lg(1-x),-b=-lg(x-1),-b=-lg(1-x)

    这样可以解出四根,一共7根!所以当b<0且c=0,关于x的方程f2(x)+bf(x)+c=0有7个不同的实数解