解题思路:(1)根据极值点是导函数对应方程的根,可知x=2为y′=0的根,结合导数的几何意义有k=y′|x=1,列出关于a,b的方程组,求解可得到y的解析式,令y′>0和y′<0,即可求得函数的单调区间;
(2)根据(1)可得y′=0的根,再结合单调性,即可得到函数的极大值与极小值,从而求得答案.
(1)∵函数y=x3+3ax2+3bx+c,
∴y'=3x2+6ax+3b,
∵函数y=x3+3ax2+3bx+c在x=2处有极值,
∴当x=2时,y′=0,即12+12a+3b=0,①
∵函数图象在x=1处的切线与直线6x+2y+5=0平行,
∴k=y′|x=1=3+6a+3b=-3,②
联立①②,解得a=-1,b=0,
∴y=x3-3x2+c,则y'=3x2-6x,
令y'=3x2-6x>0,解得x<0或x>2,
令y'=3x2-6x<0,解得0<x<2,
∴函数的单调递增区间是(-∞,0),(2,+∞),单调递减区间是(0,2);
(2)由(1)可知,y'=3x2-6x,
令y′=0,即3x2-6x=0,解得x=0,x=2,
∵函数在(-∞,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增,
∴函数在x=0时取得极大值c,在x=2时取得极小值c-4,
∴函数的极大值与极小值的差为c-(c-4)=4.
点评:
本题考点: 利用导数研究函数的极值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.
考点点评: 本题考查了导数的几何意义,导数的几何意义即在某点处的导数即该点处切线的斜率,解题时要注意运用切点在曲线上和切点在切线上.考查了利用导数研究函数的单调性,对于利用导数研究函数的单调性,注意导数的正负对应着函数的单调性.考查了利用导数研究函数的极值,求函数极值的步骤是:先求导函数,令导函数等于0,求出方程的根,确定函数在方程的根左右的单调性,根据极值的定义,确定极值点和极值.