解题思路:由等腰直角三角形的性质、旋转的性质知,△OEB与△BOC是等底同高的两个三角形;①将△DBI和△FCH平移即可得到如图所示的△EGM.②如图2,根据正方形的性质推知△ABE和△ACG都是等腰直角三角形,则根据旋转的性质推知S△AEG=S△AEM=S△AMG=S△ABC=1,所以易求△EGM的面积.
∵△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=90°,
∴OD=OC,OA=OB.
又∵∠BOE+∠AOE=90°,∠AOD+∠AOE=90°,
∴∠AOD=∠BOE,
∴△OBE≌△OAD,
∴△BCE即是以AD、BC、OC+OD的长度为三边长的三角形.
∵△OEB与△BOC是等底同高的两个三角形,
∴S△OEB=S△BOC=1,
∴S△BCE=S△OEB+S△BOC=2.
①(答案不唯一):如图1,
以EG、FH、ID的长度为三边长的一个三角形是△EGM.
②如图2,∵四边形AEDB和四边形ACFG都是正方形,
∴△ABE和△ACG都是等腰直角三角形,
∴S△AEG=S△AEM=S△AMG=S△ABC=1,
∴S△EGM=S△AEG+S△AEM+S△AMG=3,即以EG、FH、ID的长度为三边长的三角形的面积等于3.
故答案是:2,3.
点评:
本题考点: 全等三角形的判定与性质;三角形的面积;等腰直角三角形;正方形的性质;旋转的性质.
考点点评: 本题考查了全等三角形的判定与性质、三角形的面积、等腰三角形的性质以及正方形的性质.注意平移、旋转的性质的应用.