(本小题满分12分)如图,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC平分∠PAE,过C作

1个回答

  • (1)证明:连接OC,

    因为点C在⊙0上,0A=OC,所以∠OCA=∠OAC,因为CD⊥PA,所以∠CDA=90°,

    有∠CAD+∠DCA=90°,因为AC平分∠PAE,所以∠DAC=∠CAO。

    所以∠DC0=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°。

    又因为点C在⊙O上,OC为⊙0的半径,所以CD为⊙0的切线.

    (2)过0作0F⊥AB,垂足为F,所以∠OCA=∠CDA=∠OFD=90°,

    所以四边形OCDF为矩形,所以0C=FD,OF=CD.

    ∵DC+DA=6,设AD=x,则OF=CD=6-x,

    ∵⊙O的直径为10,∴DF=OC=5,∴AF=5-x,

    在Rt△AOF中,由勾股定理得

    .

    ,化简得:

    解得

    由AD

    ,故

    从而AD="2," AF=5-2=3.

    ∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.