抛物线c1:y=1/2p*x^2即x^2=2py
C1的焦点F(0,p/2)
双曲线c2:x^2/3-y^2=1
c^2=a^2+b^2=3+1=4,c=2
C2右焦点F2(2,0),
经一三象限的渐近线为y=√3/3x
对y=1/(2p)*x^2求导
y'=x/p
设M(s,t),
∵C1在点M处切线与y=√3/3x平行
那么y'|(x=s)=s/p=√3/3
∴s=p/√3
直线FF2:y=-p/4x+p/2
{y=-p/4x+p/2
{x^2=2py
==>x^2=2p(-p/4x+p/2)
==>x^2+p^2/2*x-p^2=0
则s=p/√3 为方程的正根
∴p^2/3 +p^2/2*p/√3-p^2=0
1/3+p/(2√3)-1=0
∴ p=4√3/3