解题思路:(1)利用一次函数图象上点的坐标特征,求出一次函数的解析式;
(2)分别求出直线l经过点M、点N时的t值,即可得到t的取值范围;
(3)找出点M关于直线l在坐标轴上的对称点E、F,如解答图所示.求出点E、F的坐标,然后分别求出ME、MF中点坐标,最后分别求出时间t的值.
(1)直线y=-x+b交y轴于点P(0,b),
由题意,得b>0,t≥0,b=1+t.
当t=3时,b=4,
故y=-x+4.
(2)当直线y=-x+b过点M(3,2)时,
2=-3+b,
解得:b=5,
5=1+t,
解得t=4.
当直线y=-x+b过点N(4,4)时,
4=-4+b,
解得:b=8,
8=1+t,
解得t=7.
故若点M,N位于l的异侧,t的取值范围是:4<t<7.
(3)
如右图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点.
过点M作MD⊥x轴于点D,则OD=3,MD=2.
已知∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,
∴DE=MD=2,OE=OF=1,
∴E(1,0),F(0,-1).
∵M(3,2),F(0,-1),
∴线段MF中点坐标为([3/2],[1/2]).
直线y=-x+b过点([3/2],[1/2]),则[1/2]=-[3/2]+b,解得:b=2,
2=1+t,
解得t=1.
∵M(3,2),E(1,0),
∴线段ME中点坐标为(2,1).
直线y=-x+b过点(2,1),则1=-2+b,解得:b=3,
3=1+t,
解得t=2.
故点M关于l的对称点,当t=1时,落在y轴上,当t=2时,落在x轴上.
点评:
本题考点: 一次函数综合题.
考点点评: 本题是动线型问题,考查了坐标平面内一次函数的图象与性质.难点在于第(3)问,首先注意在x轴、y轴上均有点M的对称点,不要漏解;其次注意点E、F坐标以及线段中点坐标的求法.