将(n+2)^n展开,得到的式子可表示为4n^n再加上一个式子,然后可证明到(n+2)^n》4n^n
an+1=1/2 an^2-1/2 nan +1,a1=3,an=n+2,当n》2,an^n》an^n
2个回答
相关问题
-
设数列{an}满足a(n+1)=an2-nan+1,n=1,2,3,…当a1=2时,求an.
-
数列{an}中,a1=1,an-12=(n−3)a2n+3an−1n−1(n≥2),当n≥2时,an>a1
-
设数列{an}满足an+1=a 2n-nan+1,n=1,2,3….
-
已知数列{an}满足:a1=1/3,且an=(nan-1)/(2an-1+n-1)(n≥2,n∈N*)求数列{an}的通
-
已知数列{an}满足a1=3/2,an=3nan-1/2an-1+n-1(n≥2,n∈N*),求数列{an}的通项公式
-
a1=2,a(n+1)-an=3*2^(2n-1),(1)an (2)bn=nan,求Sn
-
数列{an}满足a1=2,an+1=2^(n+1)*an/((n+1/2)*an+2^n),(1)设bn=2^n/an,
-
已知数列{an}中,若a1+2a2+3a3+…+nan=(n+1)/2an+1,若存在n∈N*,使得an≤(n+1)X,
-
数列an满足a1=1/2,nan+1(下标)-(n+1)an=n^2+n,求数列an/n的前n项和
-
数列{an},a1=1,an+1=2an-n^2+3n,求{an}.