令A=α+π/4,B=β-π/4,且已知tanB=1/4,则:
tan(α+β)=tan(A+B)
=(tanA+tanB)/(1-tanAtanB)
=(tanA+1/4)/(1-tanA/4)
设 x=tanA,则有:
(x+1/4)/(1-x/4)=2/5,得:
x=3/22
令A=α+π/4,B=β-π/4,且已知tanB=1/4,则:
tan(α+β)=tan(A+B)
=(tanA+tanB)/(1-tanAtanB)
=(tanA+1/4)/(1-tanA/4)
设 x=tanA,则有:
(x+1/4)/(1-x/4)=2/5,得:
x=3/22