解题思路:利用正弦定理化简已知的等式,再利用余弦定理表示出cosC,将得出的等式变形后代入cosC中,求出cosC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数.
利用正弦定理化简(a+b+c)(sinA+sinB-sinC)=a•sinB得:(a+b+c)(a+b-c)=ab,
整理得:(a+b)2-c2=ab,即a2+b2-c2=-ab,
∴cosC=
a2+b2−c2
2ab=[−ab/2ab]=-[1/2],
又∠C为三角形的内角,
则∠C=[2π/3].
故选D
点评:
本题考点: 余弦定理;正弦定理.
考点点评: 此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键.