f(x)=sin2x+2cos²x+1
=sin2x+2cos²x-1+2
=sin2x+cos2x+2
=√2(sin2xcosπ/4+cos2xsinπ/4)+2
=√2sin(2x+π/4)+2
(1)
-1≤sin(2x+π/4)≤1
当sin(2x+π/4)=1即2x+π/4=2kπ+π/2时取得最大值√2+2
2x=2kπ+π/4
x=kπ+π/8
即最大值√2+2,此时x=kπ+π/8 (k∈Z)
(2)
最小正周期T=2π/w=2π/2=π
f(x)=sin2x+2cos²x+1
=sin2x+2cos²x-1+2
=sin2x+cos2x+2
=√2(sin2xcosπ/4+cos2xsinπ/4)+2
=√2sin(2x+π/4)+2
(1)
-1≤sin(2x+π/4)≤1
当sin(2x+π/4)=1即2x+π/4=2kπ+π/2时取得最大值√2+2
2x=2kπ+π/4
x=kπ+π/8
即最大值√2+2,此时x=kπ+π/8 (k∈Z)
(2)
最小正周期T=2π/w=2π/2=π