Fx在(0,2a)在连续 F0=F2a,证明在(0,a)上至少存在一点B使是FB=F(B+a)
1个回答
构造函数g(x)=f(x+a)-f(x),且在区间[0,a]上是连续的.
因为:g(0)=f(a)-f(0)
g(a)=f(2a)-f(a),由f(2a)=f(0)可知g(0)乘g(a)=
相关问题
高数证明:f(x)在[0,2a]上连续,f(a)=f(2a),f(a)不等于f(0),证明存在b使f(b)=f(a+b)
函数f(x)在区间[0,2a]上连续,且f(0)=f(2a),证明;在[0,a]上至少存在一点使得f(x)=f(x+a)
设f(x)在[a,b]上连续,证明:至少存在一点ε∈[a,b],使f(ε)=[f(a)+f(b)]/2
设函数f(x)在[0,2a]上连续,且f(0)=f(2a),试证明在[0,a]上至少存在一点ξ,使得f(ξ)=f(ξ+a
介值定理的问题函数f(x)在[0,2a]上连续,且f(0)=f(2a),证明:在[0,2a]上至少存在一点ξ,使f(ξ)
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明至少存在一点ξ∈(a,b).
设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明存在一点A在(0,a)使f(A)+Af'(A)=0
一道函数连续的证明题f(x)在[0,2a]上连续,f(0)=f(2a).证明 f(x)=f(x+1) 在[0,a]上至少
若f(x)在[0,a]上连续,在(0,a)内可到,a>0,且f(0)=1,f(a)=0.证明至少存在一点C属于(0,a)
若f(x)在[0,a]上连续,在(0,a)内可导,a>0,且f(0)=1,f(a)=0,证明(1)至少存在一点&属于(0