|(x-y)/(xy-1)|≤1
即|x-y|≤|xy-1|且xy≠1
即|x-y|²≤|xy-1|²,且xy≠1
y²-2xy+x²≤x²y²-2xy+1,且xy≠1
(1-x²)(y²-1)≤0,且xy≠1
因为|x|<1,于是1-x²>0
于是y²≤1,此时y∈[-1,1]
|xy|<|y|=1,满足xy≠1
于是y得范围是[-1,1].
|(x-y)/(xy-1)|≤1
即|x-y|≤|xy-1|且xy≠1
即|x-y|²≤|xy-1|²,且xy≠1
y²-2xy+x²≤x²y²-2xy+1,且xy≠1
(1-x²)(y²-1)≤0,且xy≠1
因为|x|<1,于是1-x²>0
于是y²≤1,此时y∈[-1,1]
|xy|<|y|=1,满足xy≠1
于是y得范围是[-1,1].