f′(x)=x+2a,g′(x)=3a²/x
设交点横坐标为x0,由于在交点处有相同的切线,所以
x0+2a=3a²/x0
解得x0=a或x0=-3a(舍去),交点为(a,5a²/2),代入g(x)得:
5a²/2=3a²lna+b
b=5a²/2-3a²lna
b′=2a-3alna
令b′>0
即a(2-3lna)>0
∵a>0
∴2-3lna>0
a<e^(2/3)
即b在(0,e^(2/3))上递增,在(e^(2/3),+∝)上递减
所以当a=e^(2/3)时b取得最大值,为
b=0
f′(x)=x+2a,g′(x)=3a²/x
设交点横坐标为x0,由于在交点处有相同的切线,所以
x0+2a=3a²/x0
解得x0=a或x0=-3a(舍去),交点为(a,5a²/2),代入g(x)得:
5a²/2=3a²lna+b
b=5a²/2-3a²lna
b′=2a-3alna
令b′>0
即a(2-3lna)>0
∵a>0
∴2-3lna>0
a<e^(2/3)
即b在(0,e^(2/3))上递增,在(e^(2/3),+∝)上递减
所以当a=e^(2/3)时b取得最大值,为
b=0