证明:因为BC为圆O的切线,则∠OBC=90°.又因为OD=OA,则∠ODA=∠OAD
因为AD∥OC,则∠ODA=∠DOC,∠OAD=∠BOC,即∠DOC=∠BOC
而OD=OB,OC=OC,则△CDO≌△CBO
则∠OBC=∠ODC=90°
则OD⊥CD,则CD是圆O的切线
因为△CDO≌△CBO
则BC=CD,∠OBC=∠ODC,则BD垂直OC,且设BD与OC交F点,且不难计算出OC=13.
不难得出△OBC∽△OBF
则BF/OB=BC/OC,则BF=60/13
则BD=2BF=120/13