1 如图101所示,矩形ABCD的对角线相交于点O,BE⊥DE于点E,求证AE⊥CE

1个回答

  • 连接OE

    BE⊥DE,BED是直角三角形

    OE = 1/2BD

    矩形对角线相等,且相互平分

    OB=OD=OA=OC

    所以 OE = OA =OC

    EOA,EOC是等腰三角形

    ∠OEA+∠OEC= 1/2(∠OAE+∠OEA+∠OEC+∠OCE) = 1/2*180° = 90°

    2

    BF是角平分线

    FBC =45°.

    BFC= 45°

    所以 BC=FC

    OBC = 45+15 =60°

    OB=OC,所以 OBC是等边三角形,BC=OC

    所以 OC=FC

    ∠CFO = ∠COF

    ∠OCF = 90° -60° =30°

    ∠COF = 1/2 (180°-30°) = 75°

    ∠OEF = ∠ECF+ ∠EFC = 30°+45° = 75°

    所以 OF =EF