连接OE
BE⊥DE,BED是直角三角形
OE = 1/2BD
矩形对角线相等,且相互平分
OB=OD=OA=OC
所以 OE = OA =OC
EOA,EOC是等腰三角形
∠OEA+∠OEC= 1/2(∠OAE+∠OEA+∠OEC+∠OCE) = 1/2*180° = 90°
2
BF是角平分线
FBC =45°.
BFC= 45°
所以 BC=FC
OBC = 45+15 =60°
OB=OC,所以 OBC是等边三角形,BC=OC
所以 OC=FC
∠CFO = ∠COF
∠OCF = 90° -60° =30°
∠COF = 1/2 (180°-30°) = 75°
∠OEF = ∠ECF+ ∠EFC = 30°+45° = 75°
所以 OF =EF