由f(2+x)=f(2-x),得f(x)图像的对称轴为x=2
又∵在x轴上截得线段长为2√2
∴两零点分别为2+√2,2-√2
设f(x)=a[x-(2+√2)][x-(2-√2)]
把点(0,1)代入得
a=1/2
∴y=(1/2)[x-(2+√2)][x-(2-√2)]
=(1/2)[(x-2)-√2][(x-2)+√2]
=(1/2)(x-2)²-1
=(1/2)x²-2x+1
由f(2+x)=f(2-x),得f(x)图像的对称轴为x=2
又∵在x轴上截得线段长为2√2
∴两零点分别为2+√2,2-√2
设f(x)=a[x-(2+√2)][x-(2-√2)]
把点(0,1)代入得
a=1/2
∴y=(1/2)[x-(2+√2)][x-(2-√2)]
=(1/2)[(x-2)-√2][(x-2)+√2]
=(1/2)(x-2)²-1
=(1/2)x²-2x+1