路径不同 做功就不同
第2个:(积分号不会打 用f代替)f(AB)ydx-xdy+x+y+zdz因为x等于0 前两个都等于0
即f(AB)=f(0,c)a+zdz=1/2c2+ac
第一个 原式=f(0,2兀)asint*(-asint)-acost*acost+(acost+asint+ct/2兀)*c/2兀dt
=f(0,2兀)-a^2+根号2ac/2兀*sin(t+兀/4)+c^2/4兀^2tdt=[-a^2t-根号2ac/2兀cos(t+兀/4+c2t2/2兀2)|(0,2兀) 结果等于1/2c2-2a2兀