x^n-1
=(x^n+x^(n-1)+x^(n-2)+x^(n-3)+...+x)-(x^(n-1)+x^(n-2)+x^(n-3)+...+x+1)
=x(x^(n-1)+x^(n-2)+x^(n-3)+...+x+1)-(x^(n-1)+x^(n-2)+x^(n-3)+...+x+1)
=(x-1)(x^(n-1)+x^(n-2)+x^(n-3)+...+x+1)
两边同时除以(x-1)得
(x^n-1)/(x-1)=x^(n-1)+x^(n-2)+x^(n-3)+...+x+1
两边取极限得
lim (x^n-1)/(x-1)=n (x->1)
------------------------------------------------------
当然,如果用高等数学的洛必达法则求解会更简捷
lim (x^n-1)/(x-1) (x->1)
=lim (x^n-1)'/(x-1)'
=lim n*(x^(n-1))/1
=n*lim x^(n-1)
=n