在等差数列{an}中,a1>0,3a8=5a13,则前n项的和Sn中最大的是(  )

3个回答

  • 解题思路:等差数列的Sn为二次函数,依题意是开口向下的抛物线故有最大值,根据3a8=5a13,得到首项和公差的关系,写出等差数列的前n项和公式,把首项用公差表示,根据二次函数的最值得到结果.

    ∵等差数列的Sn为二次函数,依题意是开口向下的抛物线故有最大值,

    a13=a8+5d,d即为公差,

    又3a8=5a13

    a8=-12.5d,

    ∴a1=-19.5d

    Sn=n×a1+

    n(n−1)

    2d,

    Sn=0.5dn2-20dn,

    当n为对称轴时即n=20时Sn最大,

    故选C.

    点评:

    本题考点: 等差数列的性质.

    考点点评: 本题是一个最大值的问题,结合二次函数的性质来解题,通过解题后的反思,找准自己的问题,总结成功的经验,吸取失败的教训,增强解综合题的信心和勇气,提高分析问题和解决问题的能力.