f(Ø)=cot(πØ+2π/3)
T=π/w
=π/π
=1
φ=2π/3
定义域 πØ+2π/3≠π+kπ k∈Z
πØ≠π/3+kπ
Ø≠k+1/3
值域为R
令Ø=0
cot(2π/3)
=- √3
令y=0 cot(πØ+2π/3) =0
πØ+2π/3= kπ k∈Z
πØ= kπ-2π/3
Ø= k-2/3
渐近线的方程 πØ+2π/3=π+kπ k∈Z
πØ=π/3+kπ
Ø=k+1/3
2.f(Ø)= -2cos(2Ø-2/3)
A=2
T=2π/W
=2π/2
=3π
φ=2/3
定义域为R
值域 [-2,2] 令y=0 2sin(2Ø-2/3)=0
sin(2Ø-2/3)=0
2Ø-2/3=kπ k∈Z}
2Ø= kπ+2/3
Ø= kπ/2+1/3
令Ø =0 y=2sin(2Ø-2/3)
= sin2/3