解题思路:(1)令n=m=1可求得a1,然后令m=1,n=n+1,可得an,an+1,由等比数列的定义可判断,并求得通项公式;
(2)由nbn与Sn的关系可求得nbn,从而可得bn,
a
n
(n+1)
b
n
,运用裂项相消法可求和;
(1)由题意得,a1•a1=22,a1>0,得a1=2,
且a1•an=21+n,a1•an+1=22+n,
所以
an+1
an=2,且an≠0,
所以:{an}为等比数列,通项公式an=2n;
(2)由Sn=n(n+1)an,当n=1时,得b1=1×(1+1)a1=4,
当n≥2时,Sn=n(n+1)•2n,①
Sn−1=n(n−1)•2n−1,②
①-②得nbn=n(n+3)•2n-1,即bn=(n+3)•2n−1,
b1=4满足上式,所以bn=(n+3)•2n−1,
所以
an
(n+1)bn=
2
(n+1)(n+3)=[1/n+1−
1
n+3],
所以
a1
2b1+
a2
3b2+
a3
4b3+…+
an
(n+1)bn
=[1/2−
1
4+
1
3−
1
5]+[1/4−
1
6]+…+
1
n−1−
1
n+1+
点评:
本题考点: 数列的求和;等比关系的确定.
考点点评: 本题考查等比数列的定义、通项公式,考查数列求和,裂项相消法对数列求和高考考查重点,应重点掌握.