解题思路:(1)过点F作FH⊥BE于点H,利用正方形的性质,证得△BAP≌△HPF得出PH=AB,BP=FH进一步得出BP+PC=PC+CH,CH=BP=FH,∠FHC=90°,求得∠DCF=90°-45°=45°得出结论;
(2)延长PB至K,使BK=DG,连接AK,证得△ABK≌△ADG和△KAP≌△GAP,找出边相等得出结论;
(3)首先判定存在,在直线AB上取一点M,使四边形DMPF是平行四边形,证得△ABP≌△DAM,进一步球的结论即可.
(1)证明:如图,
过点F作FH⊥BE于点H,
∵四边形ABCD是正方形,
∴∠ABC=∠PHF=∠DCB=90°,AB=BC,
∴∠BAP+∠APB=90°
∵AP⊥PF,
∴∠APB+∠FPH=90°
∴∠FPH=∠BAP
在△BAP和△HPF中,∠ABP=∠PHF
在△BAP和△HPF中,
∠ABP=∠PHF
∠BAP=∠FPH
AP=PF,
∴△BAP≌△HPF(AAS)
∴PH=AB,BP=FH
∴PH=BC
∴BP+PC=PC+CH
∴CH=BP=FH…
而∠FHC=90°.
∴∠FCH=CFH=45°
∴∠DCF=90°-45°=45°
∴∠GCF=∠FCE;
(2)PG=PB+DG
证明:如图,
延长PB至K,使BK=DG,连接AK,
∵四边形ABCD是正方形
∴AB=AD,∠ABK=ADG=90°
在△ABK和△ADG中,
AB=AD
∠ABK=∠ADG
BK=DG,
∴△ABK≌△ADG(SAS)
∴AK=AG,∠KAB=∠GAD,
而∠APF=90°,AP=PF
∴∠PAF=∠PFA=45°
∴∠BAP+∠KAB=∠KAP=45°=∠PAF
在△KAP和△GAP中,
AK=AG
∠KAP=∠GAP
AP=AP,
∴△KAP≌△GAP(SAS)
∴KP=PG,
∴KB+BP=DG+BP=PG
即,PG=PB+DG;
(3)存在.
如图,
在直线AB上取一点M,使四边形DMPF是平行四边形,
则MD∥PF,且MD=FP
又∵PF=AP,
∴MD=AP
∵四边形ABCD是正方形,
∴AB=AD,∠ABP=∠DAM=90°
在Rt△ABP和Rt△DAM中
点评:
本题考点: 正方形的性质;全等三角形的判定与性质;平行四边形的判定.
考点点评: 此题考查了正方形的性质,结合了三角形全等的判定与性质,属于综合性比较强的题目,并涉及到探究性试题,解决本类试题要先求解,然后给出结论,再进行证明.