(1) d=
a 5 - a 2
3 =2 ,a 1=1
∴a n=2n-1
在 s n =1-
1
2 b n 中,令n=1得 b 1 =
2
3
当n≥2时, s n =1-
1
2 b n s n-1 =1-
1
2 b n-1 ,
两式相减得 b n =
1
2 b n-1 -
1
2 b n ,
∴
b n
b n-1 =
1
3 (n≥2)
b n =
2
3 (
1
3 ) n-1 =
2
3 n
(2) c n =
2 a n
b n =(2n-1)× 3 n ,
T n=1×3 1+3×3 2+5×3 3++(2n-3)×3 n-1+(2n-1)×3 n,
3T n=1×3 2+3×3 3+5×3 4++(2n-3)×3 n+(2n-1)×3 n+1,
-2T n=3+2(3 2+3 3++3 n)-(2n-1)×3 n+1= 3+2×
9(1- 3 n-1 )
1-3 -(2n-1)× 3 n+1
∴T n=3+3 n+1×(n-1)
∵n∈N +∴T n≥3