⒐根据余弦定理:c^2=a^2+b^2-2abcosC
∵a=2bcosC
∴c^2=a^2+b^2-a·a=b^2 ,即:c=b
∴选A
⒑设该三角形为△ABC,∠A、∠B、∠C所对的边分别为a、b、c
∵外接圆的面积为π,即 :πr^2=π
∴r=1 , 即:△ABC外接圆半径为1
根据正弦定理,有:a/sinA=b/sinB=c/sinC=2R=2·1=2
∴sinC=c/2
∴S△ABC=(1/2)absinC=(1/2)·ab·(c/2)=abc/4
∵S=1/4
∴abc=1
∴选A
⒒ ∵[sin(A/2)]^2=(c-b)/2c
2[sin(A/2)]^2=(c-b)/c
2[sin(A/2)]^2=1-b/c
b/c=1-2[sin(A/2)]^2
b/c=cosA
∴b=c·cosA
则2b·b=2b·ccosA ,即:2b^2=2bccosA
根据余弦定理:a^2=b^2+c^2-2bccosA=b^2+c^2-2b^2=c^2-b^2
即: a^2+b^2=c^2
∴选B