10,11,求详解

1个回答

  • ⒐根据余弦定理:c^2=a^2+b^2-2abcosC

    ∵a=2bcosC

    ∴c^2=a^2+b^2-a·a=b^2 ,即:c=b

    ∴选A

    ⒑设该三角形为△ABC,∠A、∠B、∠C所对的边分别为a、b、c

    ∵外接圆的面积为π,即 :πr^2=π

    ∴r=1 , 即:△ABC外接圆半径为1

    根据正弦定理,有:a/sinA=b/sinB=c/sinC=2R=2·1=2

    ∴sinC=c/2

    ∴S△ABC=(1/2)absinC=(1/2)·ab·(c/2)=abc/4

    ∵S=1/4

    ∴abc=1

    ∴选A

    ⒒ ∵[sin(A/2)]^2=(c-b)/2c

    2[sin(A/2)]^2=(c-b)/c

    2[sin(A/2)]^2=1-b/c

    b/c=1-2[sin(A/2)]^2

    b/c=cosA

    ∴b=c·cosA

    则2b·b=2b·ccosA ,即:2b^2=2bccosA

    根据余弦定理:a^2=b^2+c^2-2bccosA=b^2+c^2-2b^2=c^2-b^2

    即: a^2+b^2=c^2

    ∴选B